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Abstract The present study is concerned with the numerical simulation of high Reynolds
number weakly separated steady laminar flows. It is shown that a "well designed" code can solve
the complete Navier-Stokes (NS) equations and the "more suitable?" parabolized Navier-Stokes

(PNS) equations with the same convergence rate, so that solving the full NS equations is
recommended when dealing with a new problem. Furthermore, solutions to the classical
boundary layer equations in their vorticity-stream function form are obtained, which are regular
thru the separation point, i. e., do not encounter the Goldstein singularity at separation. Finally,
for a very typical high Reynolds number weakly separated flow, it is shown that, in the presence
of non negligible skewness in the body oriented computational grid, a PNS-type approximation
still provides very reliable solutions, whereas an interacting boundary layer-type model is plagued
by severe errors.
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Introduction

High Re (Reynolds number) attached flows have been computed routinely for several decades

using the classical boundary layer (BL) theory of Prandtl: the inviscid flow past the body of

interest is computed at first and then the BL equations are solved, using the inviscid pressure

gradient as a datum, to evaluate the skin friction and thus the aerodynamic drag. Eventually,

the displacement thickness obtained by the BL equations is added to the body to provide an
"augmented body" around which the inviscid flow is recomputed and so on, according to a

rigorous asymptotic expansion theory provided by Van Dyke [1].

Unfortunately, the classical BL theory breaks down in the presence of flow separation, so that

a lot of computational effort has been devoted to the development of numerical methods for

solving the Navier-Stokes (NS) equations. However, theoretical studies (see, eg, [2]) as well as

numerical investigations (see, eg, [3, 4]) have shown that, for high Re weakly separated flows, the

terms contained in the classical BL equations are sufficient to model the flow field even in the

separated region. It is now understood that the failure of the classical BL theory (when the

pressure gradient is prescribed) is due to the lack of upstream propagation required to account for

the "elliptic" nature of the separation phenomenon; and in fact, solutions to the BL equations,

which are regular thru the separation point, have been obtained by prescribing either the

displacement thickness [5], or the wall shear [6], in place of the pressure gradient.

More in general, useful solutions for high Re separated flows can be obtained from an

appropriate subset of the NS equations, provided that the "elliptic" nature of the strong viscous

inviscid interaction phenomenon is correctly accounted for. Among the many such approximate

equations used in the literature, the most widely employed and investigated appear to be the so-

called parabolized Navier-Stokes (PNS) and interacting boundary layer (IBL) equations. Starting

from the NS equations written in a body oriented orthogonal coordinate system the PNS

equations are easily obtained by dropping the diffusion terms in the streamwise direction. The

IBL equations are obtained instead by coupling the classical BL equations with a pressure

interaction law, which accounts for the variations in the inviscid (outer) pressure field induced by
the viscous effects. The PNS equations can then be considered from an asymptotic point of view

as a composite set of equations uniformly valid in both the inner (viscous) and the outer (inviscid)

regions and therefore 'equivalent" to the complete NS equations. The IBL equations are valid

instead only in the viscous region, whereas the inviscidilow is computed by means of another set,

of equations; and the viscous-inviscid interaction phenomenon is accounted for iteratively, e. g.,

by solving the inviscid and viscous flow equations using the same displacement thickness
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(prescribed appropriately) and repeating the calculations until both sets of equations provide the

same pressure distribution along the displacement body. For the case of the vorticity-stream

function equations, of interest here, the PNS equations are obtained by simply dropping the

streamwise diffusion term in the vorticity equation, so that they are also known in the literature

as the parabolized vorticity (PV) equations [3, 4]. The classical BL equations are obtained by

dropping the streamwise derivative(s) also in the stream function equation, according to the

asymptotic order of magnitude analysis of Prandti, and the IBL equations are therefore obtained

by coupling the BL equations in the viscous region (where the vorticity is nonzero) with the

Laplace equation for the stream function in the inviscid region, so as to allow for the viscous-

inviscid interaction phenomenon.

To date, a large number of numerical studies have shown that for many flow fields of' ractical

interest, namely for all of the high Re weakly separated flows, the PNS or even the IBL equations

provide a satisfactory answer, so that it would appear as an unnecessary waste of computational

effort to resort to the complete NS equations, see, e. g., [7-10]. Furthermore, due to the U

pioneering theoretical work of Smith and Chen [11-13], it starts to appear more and more evident

that the IBL equations are capable of predicting also the massive separation phenomenon and the

stall, as it has also been shown numerically by Rothmayer and Davis [14].

However, the NS equations still remain the only numerical tool capable of verifying the

correctness of the new asymptotic theories and, if solved properly, they require a computational

effort which is of the same order of magnitude as that required by the PNS, if not by the IBL

equations. In fact, although obvious, it does not seem to be generally understood that a

numerical method for solving the NS equations for high Re weakly separated flows has to be very

similar in nature to efficient PNS or IBL codes; i. e., it has to account for downstream-

propagation and transversal-viscous effects implicitly and only for the upstream-influence in an

iterative fashion. For such a code, the convergence rate will be the same (see, e. g., [10]) whether

only the terms present in the PNS (or even the IBL) equations are computed or all of the terms

in the complete NS equations are accounted for; and the extra computational cost required to

compute the negligible streamwise diffusion terms will be insignificant with respect to that

4 required to solve the PNS equations. But what, if one of these term is essential to model a

locally important phenomenon It is worth pointing out that many IBL codes only solve the BL

equations (iteratively) in the viscous region, with a far field condition, obtained by computing the

inviscid flow past the displacement body according to thin airfoil theory, accounting for the

interaction phenomenon (see, e. g., [14]). These methods, of course, may require significantly less

computational effort than codes solving the complete NS equations, especially for the case of
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supersonic outer flow.

The aim of this work is to demonstrate that for high Re weakly separated flows, a well

designed NS-PNS code can compute the NS or the PNS equations with exactly the same

convergence rate and at about the same computational cost, so that, when solving a novel

problem, the additional cost of carrying all of the terms contained in the NS equations is minimal

and certainly justified by the fact that the model employed accounts for all meaningful

phenomena. Of course, by no means it is implied that solving the NS equations by "brute force"

is an appropriate investigating tool! Asymptotic analyses are essential indeed, to prescribe

appropriate computational grids and the location and type of the farfield boundary conditions, as

well as to validate (and be validated by) numerical solutions.

Furthermore, the present study aims to demonstrate that, when solving the vorticity stream

function equations, solutions for high Re separated flows, which are regular thru the separation

point, can be obtained by solving, in the viscous region, simply the classical BL equations,

namely, by dropping the streamwise derivatives also in the stream function equation. In

particular, for the case of the high Re flow in a symmetric channel with a smooth- expansion

proposed by Roache [15], which is of parallel type, namely has negligible streamwise curvature

effects, these solutions of the BL equations will be shown to be in very good agreement with

results of the PNS and of the complete NS equations.

Finally, for a very typical high Re weakly separated flow, already studied by several authors

[7-10], in the presence of skewness of the body fitted coordinate system, it is shown that PNS-

type equations still provide results in good agreement with the complete NS solutions, whereas

IBL-type equations experience marked errors due to the incorrect representation of the

streamwise pressure gradient.

Governing Equations and Numerical Technique

The vorticity-stream function equations are given in a system of body-oriented curvilinear

coordinates as:

Wt + ( n w ,f ', 7)/J - (aw. 2,$wf, + yw, + ow, + _..)/Re = 0 (1)

S-21(f ,0 + n" + +rlb + =0 (2)
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In eqns (1-2) -w i- the vorticity , is the stream function, and 17 are the streamwise and

transversal coordinates, t is the time, subscripts indicate partial derivatives and J, a, a, , o and

r are the jacobian and the scale factors of the mapping of the physical coordinates x, y into the

computational coordinates f, q 116]. Furthermore, the terms underlined are those which are to be

dropped to provide the PNS equations and those underlined with a broken line are the additional

terms which also need to be dropped to obtain the classical BL equations. Of course, BL theory

strictly requires the use of orthogonal coordinates, for which fl in eqns (1-2) is identically zero.

However, the PNS equations have been shown to be valid also in a "Mildly Nonorthogonal

Coordinate System" [10], so that the aforementioned definition of PNS and BL equations is used

here. Eqn (2), with the vorticity term eliminated, obviously is the Laplace equation for the

stream function governing the inviscid irrotational portion of the flow field.

In the present study the incremental block-line Gauss-Seidel method proposed in Ref. 17 is

used as an efficient numerical tool for solving eqns (1-2) numerically. The governing equations are
4 discretized and linearized in time using a two level implicit Euler scheme and the delta approach

of Beam and Warming [18) to give:

+w/At + (Df n Aw + wnA1,0 '

- (a + w( A + Aw + a . 7 + rAw,)/Re =

.[(n wn),. (0,nwn),]/j + (aw - 2-l n + 'ywh + ,, + + vnw~)/Re (3)

* A~-~A~'~ ~ -o'A~-r'Aof - AW=

ori f n2 0,j+ -o 7 f+ ,pn+ 7,0 f n+wP (4)

where a relaxation-like time derivative has been added to the stream function equation to

parabolize it, At is the time step (which can be different in eqns (3) and (4) and can also vary at

every iteration), 4w - w .wn, the superscripts n+1 and n indicating the new and old time

levels tn+ ! and tn, etc. Notice that the mixed derivatives are evaluated at the old time level t',

i. e., explicitly and therefore do not appear in delta form. The presence of such terms in the

vorticity equation of the complete NS equations (when a nonorthogonal computational grid is

employed) can be critical insofar as they may reduce the stability and therefore the convergence

rate of the numerical method.

Eqns (3-4) are then discretized in space using second-order-accurate central differences

throughout - except for the incremental convective terms of the vorticity equation in the left
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hand side of eqn (3), which are approximated using first-order-accurate upwind differences - and

solved by a classical line Gauss-Seidel relaxation method, marching from left to right (see [17], for

details). It is noteworthy that by using a deferred corrector strategy for the advection terms in

eqn (3), which are approximated using upwind differences in the LHS and central differences in

the RHS, upstream propagation is allowed, although explicitly, even when solving the classical BL

equations, i. e., when all of the elliptic terms are dropped from the equations.

Results

The first problem considered in this study is the weakly separated channel flow proposed by

Roache [15]. The geometry of the channel, together with the appropriate boundary conditions

and the orthogonal 41x21 grid employed in this study is given in Figure 1 for the case Re = 10.

Roache has shown that if the length of the channel is increased proportionally to Re, for Re > >

1, the solution takes on a quasi-self-similar form; i. e., the skin friction at the wall becomes

independent of Re, when plotted versus x/Re. As such, the present problem is very suitable to

assess the capability of a numerical technique to compute high Re weakly separated flows; more

importantly, for Re >> 1 , the length of the separation bubble is found to increase

proportionally to Re, ' hereas its height remains constant, so that, from an order of magnitude

analysis, it can be argued that:

u = 0(1) (5)

v 0O(/Re) (6)

8/ay = 0(1) (7)

=ox 0(1/Re) (8)

where 0( ) indicates the standard asymptotic order of magnitude symbol. If, for large values

of Re, equations (5-8) are true, than the PNS equations and even the classical BL equations

should provide results practically coincident with those computed using the complete NS

equations. The same code was therefore used to solve the three aforementioned sets of equations,

for the case Re - 106, using the 41x21 mesh depicted in Figure 1.: the results for the vorticity at

the wall were found to be identical (to machine accuracy, i. e., 6 significant digits), with no

indication of the singularity at separation appearing when solving (iteratively) the classical BL

equations. In order to better assess this last very important issue, as well as the accuracy of the

present numerical results, a grid refinement study was conducted in both the x (quasi-streamwise)

and the y (quasi-normal) directions, using meshes with 61x21, 81x21, 41x41 and 41x01 gridpoints,
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equal to 1.1, starting from the wall. The results of the mesh refinement studies are given in

Figures 2 and 3 as the vorticity distributions along the wall: it clearly appears that the basic

41x21-mesh solution is already "exact", to plotting accuracy. Again, the NS, PNS and BL results

coincided to machine accuracy in all cases and no indication of singularity at separation was ever

encountered. It is noteworthy that for the present flow case, the length of the channel being

equal to Re/3, the longitudinal step size is always several orders of magnitude larger than the

order-one BL thickness, so that also an "ill-posed" marching method could possibly recover the

correct solution [15], by swamping out all branching solutions due to truncation errors. Therefore,

the Re = 100 flow case was also considered in this study: the BL equations were solved using two

meshes having 81x21 and 161x21 gridpoints. The two solutions were found to coincide with each

other and (after proper scaling) wit' those of Figures 2 and 3, to plotting accuracy. In

conclusion, the BL equations, when solved in an iterative way which allows for upstream

propagation, clearly do not encounter any singularity at the separation point. This result is not

surprising insofar as the value of the stream function is prescribed as a boundary condition at the

centerline of the channel; such a condition is equivalent to prescribing the displacement thickness

in the pressure-velocity BL equations, which has been shown to produce separated flow solutions

which are regular thru the separation point [51. Finally, the convergence rate for all three sets of

equations and the same mesh was always found to be identical and is provided in Figure 4, where

the average variation of the vorticity between two successive iterations is plotted versus the

iteration number. It is noteworthy that the convergence rate of the method is remarkable and

just about independent of the mesh employed for the calculations; this last result is very atypical

of any relaxation method, so that it is most likely due to the one-dimensional (parallel) nature of

the flow.

In order to compare the present NS and PNS solvers for an "extreme" situation, the Re - 10

flow was also considered. For such a case, the geometry is considerably distorted, see Figure 1,

and the Reynolds number is very low, so that it is reasonable to expect large differences between

the NS and the PNS solutions, whereas the BL equations are obviously meaningless. However, the

present NS and PNS solutions still provide wall vorticity distributions, see Figure 5, which are

qualitatively very similar. This result provides further evidence of the broad range of

applicability of the PNS equations.

For all of the calculations above, an appropriate Couette flow was used at every longitudinal

location as the initial condition and the time step was chosen equal to Re, initially, and then

updated after every iteration by dividing its initial value times the vorticity error. Therefore, for



the particular case Re = 106. the time steps were so large that the time derivatives played no

role in the computational process.

A second well known high Re weakly separated flow problem was considered in the present

study, namely the flow in a symmetric diffuser already studied by several authors [7-10], in order

to compare the NS and PNS solutions for a more general (non-parallel) flow and in the presence

of local skewness of the computational grid, as well as to assess the efficiency of the present code

with respect to several high Re weakly separated flow solvers 17-10]. Two flow cases were

considered, whose geometry and computational grid are given in Figures 6a and 6b. In both cases

the nondimensional semiheight of the channel is equal to 1, the Reynolds number, defined with

respect to such a reference length and to a unitary velocity, is equal to 6250 and the inlet flow is

a Blasius boundary layer produced by a flat plate whose leading edge is two units before the

entrance of the channel; also, the midplane of the channel is located at y = 1, whereas the

(bottom) wall, yw(x). is prescribed as follows:

0 for -1 <x<0
yw(x) = A[x2(3 - 2x)] for 0 ! x e 1 (9)

A for I < x < Xou t

In the first flow case A = - 0.08 and xou t = 3, whereas in the second more severe one, A

- 0.16 and xout = 6. The computational meshes employed in this study contain 81 and 71

equally spaced gridpoints in the x direction, respectively, and 41 gridpoints in the y direction,

stretched in such a way that the vertical mesh size grows at a constant rate of 1.08, starting from

the wall. In Figure 6a only every other gridline is plotted, whereas in Figure 6b all of the vertical

coordinate lines are shown. The mesh in Figure 6a was chosen fine enough to provide reasonably

accurate answers to compare with previously published results, whereas the mesh in Figure Ob is

not considered adequate to provide accurate solutions, but valuable to provide a meaningful one-

to-one comparison between NS and PNS results obtained using the same numerical method and

mesh. It is noteworthy that in the range 0 e, x <5 1, the mesh is nonorthogonal, so that the

mixed derivatives in eqns (1-4) may be expected to play a considerable role, especially for the

second more severe flow situation. For both flow cases, results were obtained using the same

computer code to solve the NS and the PNS equations. The initial condition was taken to be the

inlet boundary condition in the entire flow field. Symmetry was enforced by prescribing the

value of the stream function at the center of the diffuser (y - 1), where a zero vorticity was also

prescribed. At the wall the standard no-slip zero-injection conditions were imposed and, finally,

the BL equations were solved at the outlet station, with the first derivatives evaluated as three-

point second-order-accurate backward differences. The initial time step was taken to be equal to
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0.1 for the vorticity equation and 1000 for the stream function equation. After every iteration

the time steps were adjusted by dividing the initial values by the average vorticity and stream

function variations (residuals), respectively. An 3verrelaxation factor [8] of 1.5 was also used, for

the stream function equation only. All of these values are the frst and only ones used, so that no

optimization of the convergence rate of the method was pursued. For the first flow case, IBL-

type equations were also solved, by dropping the streamwise derivatives also in the stream

function equation, in the viscous region, while retaining it in the outer inviscid flow (namely, in

the upper half of the computational gridpoints).

The results for the first flow case are given in Figures 7 and 8, where the convergence history

for the NS and PNS equations and the vorticity distributions along the wall for all of the three

sets of equations are given, respectively. The corresponding results for the second flow case are

given in Figures 9 and 10, respectively. From the results in Figures 7-10 the following

conclusions emerge. The NS and PNS equations provide practically identical results and

converge at the same rate. The IBL-type equations are plagued, instead, by local errors near the

curvature discontinuities at the wall, where the pressure gradient induced by the inviscid turning

of the streamlines is not accounted for correctly. It is noteworthy that for the second flow case

the IBL-type equations still converge without difficulties, but the final solution is completely

destroyed by spatial oscillations produced by the more severe curvature discontinuities. Also, the

convergence rate of the IBL-type equations, not reported in Figures 7 and 9, is slightly slower

than that of the NS and PNS equations, due to the local larger gradients to be computed.

The present solution given in Figure 8, after proper scaling, is found to be in reasonable

agreement with those of Edwards and Carter [7] and of Hoffman [10], but predicts a slightly

longer separation region. The PNS equations were therefore solved using a finer 121x8l mesh; the

results, also given in figure 8, are almost identical to those obtained using the coarser mesh. The

present solutions are thus considered "correct", to plotting accuracy, and the slight discrepancy

with the aforementioned solutions is believed to be due to their first-order-accuracy in the

streamwise direction. For the second flow case, these authors do not report the skin friction

distribution. However the length and position of the separated region can be compared using the

streamlines plot of Ref 7. Again, tie present solutions predict a separation region longer than

that computed by Edwards and Carter [7]; however, in this case the present mesh is not

considered fine enough for such a calculation and, also, the outlet boundary conditions are

imposed at a not sufficiently downstream location. A very important point needs some attention:

the solutions of Ref. 7 use a correct IBL model which contains the same terms of the NS

equations considered by the present IBL-type approximation, when an appropriate, orthogonal
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grid is employed. Therefore, for the present problem, the normal pressure gradient is indeed

negligible in the (separated) boundary layer, but the present IBL-type model cannot be accurate

insofar as it neglects the pressure gradient in the y direction, which is considerably inclined with

respect to the direction normal to the wall, especially near the x - 0 and x =1 locations. In

conclusion, the PNS equations can still be used in the presence of mild skewness of the

computational mesh, but the IBL equations strictly require a body oriented coordinate mesh

which is orthogonal, at least near the body surface.

As far as the efficiency of the calculations is concerned, the following points emerge: the

present apprcach is reasonably efficient, but seems to require from two to four times more

iterations than other current PNS or IBL solvers [7-10]. However, the present method is

extremely robust, insofar a no parameter was ever optimized, or changed when solving the second

more difficult problem, for which the convergence rate was found to be only marginally slower

than for the first one (see Figures 7 and 9). Also, the present approach does not resort '

kind of inner iteration, insofar as the nonlinearities and the "elliptic" nature of the flo- td are

accounted by a single global iteration process. Furthermore, the present method is tht inly one

which effectively employs second-order-accurate central differences for the first derivativ . the

streamwise direction and therefore is anticipated to be more accurate (for an equivalent mesh) to

methods resorting to first-order-accurate upwind differences [8] or to the FLARE approximation

in the separated region [7]. Finally, the convergence of the proposed approach can be improved

by using backward sweeping (at least in the separated region) at successive iterations, horizontal

line relaxations every once in a while, or a multigrid approach [19]. None of these possible

improvements was employed here, because the aim of this work was by no means to provide the
most efficient" high Re weakly separated flow solver, but to demonstrate that the NS and PNS

equations can be solved with essentially the same efficiency, so that it may be wise to consider all

of the NS terms, in order to avoid unpleasant "surprises". From this respect, it is felt that such

a goal has been achieved, together with the secondary ones of providing separated flow solutions

to the classical BL equations, which are free of the separation singularity, and of assessing the

influence of skewness in the computational mesh on the performance of PNS-type and IBL-type

models.
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Figure 6b. Diffuser geometry and mesh for the case A -0.16.
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Figure 7. Convergence history for diffuser flow (Re = 6250; A = - 0.08).
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Figure 8. Wall vorticity results for diffuser flow (Re = 6250; A - 0.08).
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Figure 9. Convergence history for diffuser flow (Re 6250; A =-0.16).
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Figure 10. Wall vorticity results for diffuser flow (Re =6250; A =-0.16).]
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